My doctoral thesis is entitled:
Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control.
It is published under open access terms and also as a book. The following ressources are available:
- BookFinder for published book
- Download full text [pdf, 14MB]
- English Summary [pdf]
- German Summary (Deutsche Kurzfassung) [pdf]
- Link to Open Access Library
For the thesis, I received the Friedrich-List-Preis for the best Ph.D. dissertation at the Faculty of Transportation and Traffic Sciences of the TU Dresden in 2008 and the Best Dissertation Award of the IEEE ITS Society in 2009.
Please cite the thesis as follows:
Arne Kesting, Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control, Verlag Dr. Müller, Saarbrücken, ISBN 978-3-639-05859-8 (2008)
If you want to link to the open access source please use the following persistent URL:
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1204804167720-57734
Thesis Abstract
The thesis is composed of two main parts. The first part deals with a microscopic traffic flow theory. Models describing the individual acceleration, deceleration and lane-changing behavior are formulated and the emerging collective traffic dynamics are investigated by means of numerical simulations. The models and simulation tools presented provide the methodical prerequisites for the second part of the thesis in which a novel concept of a traffic-adaptive control strategy for ACC systems is presented. The impact of such systems on the traffic dynamics can solely be investigated and assessed by traffic simulations.
The focus is on future adaptive cruise control (ACC) systems and their potential applications in the context of vehicle-based intelligent transportation systems. In order to ensure that ACC systems are implemented in ways that improve rather than degrade traffic conditions, the thesis proposes an extension of ACC systems towards traffic-adaptive cruise control by means of implementing an actively jam-avoiding driving strategy. The newly developed traffic assistance system introduces a driving strategy layer which modifies the driver's individual settings of the ACC driving parameters depending on the local traffic situation. Whilst the conventional operational control layer of an ACC system calculates the response to the input sensor data in terms of accelerations and decelerations on a short time scale, the automated adaptation of the ACC driving parameters happens on a somewhat longer time scale of, typically, minutes. By changing only temporarily the comfortable parameter settings of the ACC system in specific traffic situations, the driving strategy is capable of improving the traffic flow efficiency whilst retaining the comfort for the driver. The traffic-adaptive modifications are specified relative to the driver settings in order to maintain the individual preferences. The proposed system requires an autonomous real-time detection of the five traffic states by each ACC-equipped vehicle. The formulated algorithm is based on the evaluation of the locally available data such as the vehicle's velocity time series and its geo-referenced position (GPS) in conjunction with a digital map. It is assumed that the digital map is complemented by information about stationary bottlenecks as most of the observed traffic flow breakdowns occur at these fixed locations. By means of a heuristic, the algorithm determines which of the five traffic states mentioned above applies best to the actual traffic situation. Optionally, inter-vehicle and infrastructure-to-car communication technologies can be used to further improve the accuracy of determining the respective traffic state by providing non-local information.
By means of simulation, we found that the automatic traffic-adaptive driving strategy improves traffic stability and increases the effective road capacity. Depending on the fraction of ACC vehicles, the driving strategy "passing a bottleneck" effects a reduction of the bottleneck strength and therefore delays (or even prevents) the breakdown of traffic flow. Changing to the driving mode "leaving the traffic jam" increases the outflow from congestion resulting in reduced queue lengths in congested traffic and, consequently, a faster recovery to free flow conditions. The current travel time (as most important criterion for road users) and the cumulated travel time (as an indicator of the system performance) are used to evaluate the impact on the quality of service. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were significantly reduced even with much lower penetration rates. Moreover, the cumulated travel times decreased consistently with the increase in the proportion of ACC vehicles.
Zusammenfassung in Deutsch
In der Arbeit wird ein neues verkehrstelematisches Konzept für ein verkehrseffizientes Fahrverhalten entwickelt und als dezentrale Strategie zur Vermeidung und Auflösung von Verkehrsstaus auf Richtungsfahrbahnen vorgestellt. Die operative Umsetzung erfolgt durch ein ACC-System, das um eine, auf Informationen über die lokale Verkehrssituation basierende, automatisierte Fahrstrategie erweitert wird. Die Herausforderung bei einem Eingriff in das individuelle Fahrverhalten besteht - unter Berücksichtigung von Sicherheits-, Akzeptanz- und rechtlichen Aspekten - im Ausgleich der Gegensätze Fahrkomfort und Verkehrseffizienz. Während sich ein komfortables Fahren durch große Abstände bei geringen Fahrzeugbeschleunigungen auszeichnet, erfordert ein verkehrsoptimierendes Verhalten kleinere Abstände und eine schnellere Anpassung an Geschwindigkeitsänderungen der umgebenden Fahrzeuge.
Als allgemeiner Lösungsansatz wird eine verkehrsadaptive Fahrstrategie vorgeschlagen, die ein ACC-System mittels Anpassung der das Fahrverhalten charakterisierenden Parameter umsetzt. Die Wahl der Parameter erfolgt in Abhängigkeit von der lokalen Verkehrssituation, die auf der Basis der im Fahrzeug zur Verfügung stehenden Informationen automatisch detektiert wird. Durch die Unterscheidung verschiedener Verkehrssituationen wird ein temporärer Wechsel in ein verkehrseffizientes Fahrregime (zum Beispiel beim Herausfahren aus einem Stau) ermöglicht. Machbarkeit und Wirkungspotenzial der verkehrsadaptiven Fahrstrategie werden im Rahmen eines mikroskopischen Modellierungsansatzes simuliert und hinsichtlich der kollektiven Verkehrsdynamik, insbesondere der Stauentstehung und Stauauflösung, auf mehrspurigen Richtungsfahrbahnen bewertet.