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measurements are 250 s, 400 s, and 300 s, respectively. All data sets
show complex situations of daily city traffic with several acceleration
and deceleration periods, including standstills caused by traffic lights.
Because of their high resolution and quality, these data sets have
been considered in the literature (5, 7, 8).

Two car-following models of similar complexity (thus, with the
same number of parameters), are applied to the empirical trajectories:
the intelligent driver model (IDM) (9) and the velocity difference
model (VDIFF) (10). Nonlinear optimization will be used to deter-
mine the optimal model parameters that best fit the given data. In
contrast to the previous studies, this study considers three different
error measures because the fit errors alone do not provide a good
basis for evaluation of the applied models. Furthermore, it is argued
that it is sufficient (and superior) to minimize the objective functions
exclusively with respect to vehicle gaps and not with respect to speeds.
It is shown that the variation in the parameter values with respect to
the different measures is surprisingly high for the VDIFF, whereas
the IDM is more robust, suggesting a new criterion in the context of
benchmarking microscopic traffic models. The paper also shows that
an additional parameter—namely, the reaction time that is widely
considered to be an important part of a car-following model—does
not improve the reproduction of the empirical data. Since reaction
times clearly exist, this result suggests that drivers compensate for
the human reaction time by anticipation.

CAR-FOLLOWING MODELS 
UNDER INVESTIGATION

Microscopic traffic models describe the motion of each individual
vehicle, that is, they model the action such as accelerations and
decelerations of each driver as a response to the surrounding traffic
by means of an acceleration strategy toward a desired velocity in the
free-flow regime, a braking strategy for approaching other vehicles
or obstacles, and a car-driving strategy for maintaining a safe distance
when driving behind another vehicle. Microscopic traffic models
typically assume that human drivers react to the stimulus from neigh-
boring vehicles with the dominant influence originating from the
directly leading vehicle known as follow-the-leader or car-following
approximation.

Two microscopic car-following models are considered that are
formulated as ordinary differential equations and, consequently,
space and time are treated as continuous variables. This model class
is characterized by an acceleration function
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Calibrating Car-Following Models 
by Using Trajectory Data
Methodological Study

Arne Kesting and Martin Treiber

The car-following behavior of individual drivers in real city traffic is
studied on the basis of (publicly available) trajectory data sets recorded
by a vehicle equipped with a radar sensor. By means of a nonlinear
optimization procedure based on a genetic algorithm, the intelligent
driver model and the velocity difference model are calibrated by mini-
mizing the deviations between the observed driving dynamics and the
simulated trajectory in following the same leading vehicle. The reliability
and robustness of the nonlinear fits are assessed by applying different
optimization criteria, that is, different measures for the deviations between
two trajectories. The obtained errors are between 11% and 29%, which
is consistent with typical error ranges obtained in previous studies. It is
also found that the calibrated parameter values of the velocity difference
model depend strongly on the optimization criterion, whereas the intel-
ligent driver model is more robust. The influence of a reaction time is
investigated by applying an explicit delay to the model input. A negligible
influence of the reaction time is found and indicates that drivers compen-
sate for their reaction time by anticipation. Furthermore, the parameter
sets calibrated to a certain trajectory are applied to the other trajectories;
this step allows for model validation. The results indicate that intradriver
variability rather than interdriver variability accounts for a large part
of the calibration errors. The results are used to suggest some criteria
toward a benchmarking of car-following models.

As microscopic traffic flow models are used mainly to describe
collective phenomena such as traffic breakdowns, traffic instabil-
ities, and the propagation of stop-and-go waves, these models tra-
ditionally are calibrated with respect to macroscopic traffic data,
for example, 1-min flow and velocity data collected by double-loop
detectors. As microscopic traffic data have become more available,
the problem of analyzing and comparing microscopic traffic flow
models with real microscopic data has raised some interest in the
literature (1–5).

This paper considers three empirical trajectories of different drivers
that are publicly available and that have been provided by Robert
Bosch GmbH (6). The data sets were recorded in 1995 during an
afternoon peak period on a fairly straight one-lane road in Stuttgart,
Germany. A car equipped with a radar sensor in front provides the
relative speed and distance to the car ahead. The duration of the
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that depends on the actual velocity v(t), the (net distance) gap s(t),
and the velocity difference Δv(t) relevant to the leading vehicle:

Notice that Δv is defined as the approaching rate, that is, positive
if the following vehicle is faster than the leading vehicle.

Intelligent Driver Model

The IDM is defined by the acceleration function (9)

This expression combines the acceleration strategy 

toward a desired velocity v0 on a free road with the parameter a for
the maximum acceleration with a braking strategy

which is dominant if the current gap s(t) to the preceding vehicle
becomes smaller than the desired minimum gap:

The minimum distance s0 in congested traffic is significant for
low velocities only. The dominating term of Equation 3 in stationary
traffic is vT, which corresponds to following the leading vehicle with
a constant desired (safety) time gap T. The last term is active only in
nonstationary traffic and implements an intelligent driving behavior
including a braking strategy that, in nearly all situations, limits braking
decelerations to the comfortable deceleration b. Note, however, that
the IDM brakes stronger than b if the gap becomes too small. This
braking strategy makes the IDM collision-free. All IDM parameters v0,
T, s0, a, and b, are defined by positive values.

Velocity Difference Model

Another popular car-following model is the VDIFF (10), which is
closely related to the optimal velocity model by Bando et al. (11).
The acceleration function consists of a term proportional to a gap-
dependent optimal velocity vopt(s) and a term that takes velocity
differences Δv as a linear stimulus into account:

The parameter τ is the relaxation time that describes the adaptation
to a new velocity due to changes in s and v. The sensitivity param-
eter λ considers the crucial influence of Δv. The properties of the
VDIFF are defined by the function for the optimal velocity vopt(s).
In the literature, the following function is proposed:
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The parameter v0 defines the desired velocity under free traffic

conditions. The interaction length lint determines the transition regime
for the s-shaped function (Equation 5) going from vopt(s = 0) = 0 to
vopt → v0 when the distance to the leading vehicles becomes large.
Finally, the form factor β defines (together with lint) the shape of the
equilibrium flow–density relation (also known as fundamental dia-
gram), which is considered later in the paper. In contrast to the IDM,
the VDIFF exhibits collisions for some regimes of the parameter space.

CALIBRATION METHODOLOGY

Finding an optimal parameter set for a car-following model with
a nonlinear acceleration function such as Equations 2 and 4 cor-
responds to a nonlinear optimization problem which has to be solved
numerically.

Simulation Setup

The Bosch trajectory data contains velocities of both the leading and
the following (measuring) vehicle (6). These data therefore allow
for a direct comparison between the measured driver behavior and
trajectories simulated by a car-following model with the leading
vehicle serving as externally controlled input. Initialized with the
empirically given distance and velocity differences, v sim(t = 0) =
v data(0) and s sim(t = 0) = s data(0), the microscopic model is used to
compute the acceleration and, from this, the trajectory of the following
car. The gap to the leading vehicle is then given by the difference
between the simulated trajectory x sim(t) (front bumper) and the given
position of the rear bumper of the leading vehicle x data

lead (t):

This can be directly compared to the gap sdata(t) provided by the
Bosch data (6). In addition, the distance ssim(t) has to be reset to the
value in the data set when the leading object changes as a result of a
lane change by one of the considered vehicles. For example, the lead-
ing vehicle of Data Set 3 (see the results section) turning into another
street at about 144 s leads to a jump in the gap of the considered
follower.

Objective Functions

The calibration process aims at minimizing the difference between
the measured driving behavior and the driving behavior simulated
by the car-following model under consideration. Basically, any
quantity can be used as an error measure that is not fixed in the
simulation, such as the velocity, the velocity difference, or the gap.
In the following, the error in the gap s(t) is used for conceptual
reasons: when optimizing with respect to s, the average velocity
errors are automatically reduced as well. This does not hold the
other way around, as the error in the distance may incrementally
grow when optimizing with respect to differences in the velocities
v sim(t) and v data

follow (t).
For the parameter optimization, an objective function is needed as a

quantitative measure of the error between the simulated and observed
trajectories. As the objective function has a direct impact on the
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calibration result, three different error measures are considered. The
relative error is defined as a functional of the empirical and simulated
time series, s data(t) and s sim(t):

Here, the expression 〈.〉 means the temporal average of a time
series of duration ΔT, that is,

Since the relative error is weighted by the inverse distance, this
measure is more sensitive to small distances s than to large distances.
For example, a simulated gap of 10 m compared to a distance of 5 m
in the empirical data results in a large error of 100%, whereas the
same deviation of 5 m leads, for instance, to an error of 5% only for
a spacing of 100 m, which is typical for large velocities. In addition,
absolute error is defined as

As the denominator is averaged over the whole time series interval,
the absolute error Fabs ⎣s sim⎦ is less sensitive to small deviations from
the empirical data than Frel [s sim]. However, the absolute error mea-
sure is more sensitive to large differences in the numerator, that is,
for large distances s. Note that the error measures are normalized to
make them independent of the duration ΔT of the considered time
series allowing for a direct comparison of different data sets.

Because the absolute error systematically overestimates errors for
large gaps (at high velocities) and the relative error systematically
overestimates deviations of the observed headway in the low velocity
range, a combination of both error measures is also studied. To do
this, the mixed error measure is defined:

Optimization with Genetic Algorithm

To find an approximative solution to the nonlinear optimization
problem, a genetic algorithm is applied as a search heuristic (12).
The implemented genetic algorithm proceeds as follows:

1. An individual represents a parameter set of a car-following
model, and a population consists of N such sets.

2. In each generation, the fitness of each individual in the popu-
lation is determined via one of the objective functions, Equation 7,
9, or 10.

3. Pairs of two individuals are stochastically selected from the
current population on the basis of their fitness scores and recombined
to generate a new individual. Except for the best individual, which
is kept without any modification to the next generation, the genes of
all individuals, that is, their model parameters, are varied randomly,
corresponding to a mutation that is controlled by a given probability.
The resulting new generation is then used in the next iteration.
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4. The termination criterion is implemented as a two-step process.
Initially, a fixed number of generations is evaluated. Then, the evolu-
tion terminates after convergence, which is specified by a constant
best-of-generation score for at least a given number of generations.

Parameter Constraints and Collision Penalty

Both the IDM and the VDIFF contain five parameters and are therefore
formally equivalent in their complexity. To restrict the parameter space
for the optimization to reasonable and positive parameter values with-
out excluding possible solutions, the following constraints are applied
for the minimum and maximum values. For the IDM, the desired
velocity v0 is restricted to the interval [1, 70] m/s, the desired time gap
T to [0.1, 5] s, the minimum distance s0 to [0.1, 8] m, and the maximum
acceleration a and the comfortable deceleration b to [0.1, 6] m/s2. For
the VDIFF, the allowed parameter intervals are also [1, 70] m/s for the
desired velocity v0, [0.05, 20] s for the relaxation time τ, [0.1, 100] m
for the interaction length lint, and [0.1, 10] m for the form factor β, and
the (unitless) sensitivity parameter λ is limited to [0, 3].

Finally, it must be taken into account that some regions of the
VDIFF parameter space lead to collisions. To make these solutions
unattractive to the optimization algorithm, a large crash penalty value
is added to the objective measure, which is the standard procedure
for numerical optimization.

CALIBRATION RESULTS

Optimal Model Parameters

By applying the described optimization method, the best fit of the
car-following models to the empirical data is found. The calibration
results for the three data sets and the considered three objective func-
tions, Equations 7, 9, and 10, are summarized in Table 1. Figure 1
compares the dynamics of the gap s(t) resulting from the calibrated
parameters with the empirically measured trajectories. The depicted
simulations have been carried out with the optimal parameters regard-
ing the mixed error measure, Equation 10. The obtained errors are
in the range of 11% to 29%, which is consistent with typical error
ranges obtained in previous studies (1–3). The concluding section dis-
cussed the influencing factors for the deviations between empirical
and simulated car-following behavior.

Obviously, the calibrated model parameters vary from one data set
to another because of different driving situations. Furthermore, a
model that best fits a certain driver does not necessarily do so for a
different driver. In Data Set 3, the IDM performs considerably better
than the VDIFF, whereas little difference is found for Data Set 2.
Moreover, the calibrated model parameters also depend considerably
on the underlying objective function. For example, Data Set 3 can
be reproduced best, and Data Set 2 leads to the largest deviations—
consistently for both the IDM and the VDIFF. Here, the IDM param-
eters show a significantly smaller variation for a considered data set
than does the VDIFF. This finding is relevant for a benchmarking
of traffic models. It is not sufficient to consider only the fit errors, but
the quality of the traffic model is also determined by the consistency
and robustness of the calibrated parameters. A subsequent section
studies the models’ parameter spaces by means of a sensitivity and
validation analysis.

In Data Set 3, the desired speed is estimated to be v0 = 58.0 km/h
(corresponding to the maximum velocity reached in the recorded
driving situations), whereas the other two sets result in v0 ≈ 250 km/h



TABLE 1 Calibration Results for Models

Data Set 1 Data Set 2 Data Set 3

Frel(s) Fmix(s) Fabs(s) Frel(s) Fmix(s) Fabs(s) Frel(s) Fmix(s) Fabs(s)

IDM

Error [%] 24.0 20.7 20.7 28.7 26.2 25.6 18.0 13.0 11.2

v0[m/s] 70.0 69.9 70.0 69.8 69.9 69.9 16.1 16.1 16.4

T[s] 1.07 1.12 1.03 1.51 1.43 1.26 1.30 1.30 1.39

s0[m] 2.41 2.33 2.56 2.63 2.82 3.40 1.61 1.52 1.04

a[m/s2] 1.00 1.23 1.40 0.956 0.977 1.06 1.58 1.56 1.52

b[m/s2] 3.21 3.20 3.73 0.910 0.994 1.11 0.756 0.633 0.614

VDIFF

Error [%] 25.5 25.8 21.4 29.1 26.7 25.6 28.2 19.0 14.5

v0 [m/s] 7.02 14.8 18.1 11.7 49.5 9.56 70.0 26.3 46.2

τ [s] 11.9 20.0 4.90 1.48 20.0 20.0 19.4 4.87 5.45

lint [m] 1.62 9.60 5.23 3.93 12.1 4.26 28.6 20.7 40.9

β [m] 4.16 1.21 2.14 2.69 1.89 2.30 1.31 0.758 0.102

λ [1] 0.534 0.724 0.536 0.00 0.610 0.579 0.59 0.694 0.610
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FIGURE 1 Comparison of simulated and empirical trajectories. Model parameters are calibrated according 
to Table 1 for mixed error measure.
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(corresponding to the maximum value allowed in the numerical
optimization). This unreasonably high value can be explained by the
fact that Data Sets 1 and 2 describe bound traffic without acceleration
periods to the desired speed. Therefore, the calibration result of v0 is
relevant only for a lower bound. This is plausible because the derived
velocity does not influence the driving dynamics if it is considerably
higher than vlead in a car-following situation. Consistent with this, the
error measures for Data Sets 1 and 2 change little when varying v0

in the range between 60 and 250 km/h.

Microscopic Flow–Density Relations

In the literature, the state of traffic is often formulated in macroscopic
quantities such as traffic flow and density. The translation from the
microscopic gap s into the density ρ is given by the micro–macro
relation

where l is the vehicle length, fixed here to 5 m. The flow Q as defined
by the inverse of the time headway is given by the vehicle’s actual 

time gap and the passage time for its own vehicle length :

Furthermore, the flow–density points (Q(t), ρ(t)) can be contrasted
to the models’ equilibrium properties describing states of homoge-
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neous and stationary traffic (so-called fundamental diagrams). As
equilibrium traffic is defined by vanishing velocity differences and
accelerations, the modeled drivers keep a constant velocity ve , which
depends on the gap to the leading vehicle. For the VDIFF, this equi-
librium velocity is directly given by the optimal velocity function,
Equation 5. Hence, the fundamental diagram Q(ρ) = veρ can be directly
calculated by using Equation 11. For the IDM under the conditions
v
. = 0 and Δv = 0, only the inverse, that is, the equilibrium gap se as
a function of the velocity, can be solved analytically, leading to

However, the fundamental diagrams of the IDM can be obtained
numerically by parametric plots varying v.

Figure 2 is an alternative view to Figure 1 of empirical and sim-
ulated data, for traffic stability in particular. The flow–density points
(Q(t), ρ(t)) are plotted for each recorded time step of the empirical
data and the simulated trajectories. In addition, the fundamental dia-
gram is plotted as an equilibrium curve. The diagrams give a good
overview of the recorded traffic situations. Whereas Data Sets 1 and 2
mainly contain car-following behavior at distances smaller than 20 m
(corresponding to densities larger than 50/km), Data Set 3 also features
a nonrestricted driving situation with a short period of free acceler-
ation (corresponding to the branch with densities lower than 30/km
of the flow–density plot). Furthermore, the plots directly show the
stability properties of the found optimal parameter sets. Straight lines
(for example, in Data Sets 1 and 2 for the VDIFF) correspond to very
stable settings with short velocity adaptation times τ, whereas wide
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FIGURE 2 Microscopic flow–density relations derived from given and simulated gaps s(t) and velocities v(t), respectively.
Equilibrium flow–density relations are also plotted. Representation offers alternative view to Figure 1 of empirical and
simulated data, for traffic stability in particular.



circles around the equilibrium state (as for the IDM in Data Set 1)
indicate less stable settings corresponding to smaller values of the
IDM acceleration parameter a. Both parameters are related inversely
to each other: a large relaxation time τ in the VDIFF corresponds to
a small value of a in the IDM.

Sensitivity Analysis

Starting from the optimized model parameters summarized in Table 1,
varying a single model parameter while keeping the other param-
eters constant is straightforward. The resulting one-dimensional
scan of the parameter space gives good insight into the model’s
parameter properties and sensitivity. Furthermore, the application
of different objective functions such as Equations 7, 9, and 10 can
be seen as a benchmark for the robustness of the model calibration.
A good model should not strongly depend on the chosen error
measure.

Figure 3 shows the resulting error measures of Data Set 3, plotted
in logarithmic scale. Remarkably, all error curves for the IDM are
smooth and show only one minimum (which is therefore easy to
determine by the optimization algorithm). As the data sets mainly
describe car-following situations in obstructed traffic and standstills,
the IDM parameters T, s0, and a are particularly significant and show
distinct minima for the three proposed error measures, whereas the
values of v0 were difficult to determine exactly from Data Sets 1
and 2, where the desired velocity is never approximated. The com-
fortable deceleration b also is not very distinct (not shown here). The
solutions belonging to different objective functions are altogether in
the same parameter range. This robustness of the IDM parameter
space is an important finding of this study.

The results for the VDIFF imply a less positive model assessment:
the calibration results strongly vary with the chosen objective function,
indicating a strong sensitivity of the model parameters. Furthermore,
too high values of the desired velocity lead to vehicle collisions in
the simulation, as indicated by an abrupt raise in the error curves.
Interestingly, the sensitivity parameter λ (taking into account veloc-
ity differences) has to be larger than approximately 0.5 to avoid
accidents. Velocity differences are therefore a crucial input quantity
for car-following models.

Consideration of Explicit Reaction Time

The considered car-following models describe an instantaneous
reaction (in the acceleration) to the leading car. A complex reaction
time, however, is an essential feature of human driving because of the
physiological aspects of sensing, perceiving, deciding, and perform-
ing an action. Therefore, a reaction time is incorporated into the IDM
and the VDIFF to investigate whether an additional model parameter
will improve the calibration results.

A reaction time Tr can be additionally incorporated in a time-
continuous model of Type 1 by evaluating the right-hand side at a
previous time t − Tr. If the reaction time is a multiple of the update
time interval, Tr = nΔt, it is straightforward to consider all input
quantities at n time steps in the past. If Tr is not a multiple of the
update time interval Δt, a linear interpolation proposed by Treiber
et al. (13) is used according to

x t T x xr t n t n−( ) = + −( )− − −β β1 1 14( )

where x denotes any input quantity such as s, v, or Δv (see the right-
hand side of Equation 1), and xt−n denotes this quantity taken n time
steps before the actual step. Here, n is the integer part of Tr /Δ t and the
weight factor of the linear interpolation is given by β = Tr /Δ t − n.
As initial conditions, values for the dependent variables are required
for a whole time interval Tr. In the simulations, the values from the
empirical data were used as initial conditions. For the stability prop-
erties of the IDM with reaction time, see the work of Kesting and
Treiber (14).

Figure 4 shows the systematic variation of the reaction time Tr

while the other parameters are kept at their optimal values as listed
in Table 1 for the mixed error measure, Equation 10. An additional
reaction time Tr does not decrease the fit errors. Moreover, for small
reaction times, there is no influence at all, whereas values larger than
a critical reaction time cause collisions as indicated by the abrupt
raise in the errors. For the IDM, this critical reaction time T c

crit is
smaller but of the order of the calibrated desired (safety) time gap
parameters for the three sets. Similar values have been found for the
VDIFF. Because the VDIFF does not feature an explicit time gap
parameter, however, it is not as easy to interpret.

The values of T c
crit are relatively high because the considered sce-

narios are limited to a single pair of vehicles over a limited duration
and therefore only local stability properties can be tested. This finding
is in agreement with a simulation study on local and collective sta-
bility properties of the IDM with explicit delay (14, 15). Furthermore,
the negligible influence of the reaction time as an explanatory variable
can be interpreted in the way the human drivers are able to compen-
sate for their considerable reaction time, which is about 1 s (16), by
anticipation, because of driving experience. These compensating
influences have recently been modeled and analyzed (13, 14).

Validation by Cross Comparison

The obtained calibrated parameters are validated by applying these
settings to the other data sets, that is, by using the parameters cali-
brated on the basis of another data set. The three optimal parameter
settings listed in Table 1 are used with the mixed error measure
(Equation 10). The obtained errors can be found in Table 2.

This cross-comparison allows one to check for the reliability of the
obtained parameters and automatically takes into account the variance
of the calibrated parameter values. For the IDM, the obtained errors
for the cross-compared simulation runs are of the same order as for
the calibrated parameter sets. Therefore, the car-following behavior of
the IDM turned out to be robust for reasonable changes of parameter
settings. In contrast, the VDIFF is more sensitive, leading to larger
errors. One parameter set even led to collisions, which is reflected
in a large error due to the applied crash penalty.

DISCUSSION AND CONCLUSIONS

The IDM and the VDIFF were used to reproduce three empirical
trajectories. Calibration errors were found to be between 11% and
30%. These results are consistent with typical error ranges obtained
in previous studies (1, 2, 3). Three qualitative influences contribute
to these deviations between observation and reproduction. Note,
however, that noise in the data contribute to the fit errors as well (17).

A significant part of the deviations between measured and simu-
lated trajectories can be attributed to the interdriver variability (18),
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FIGURE 3 Systematic variation of one model parameter while other parameters are kept at optimal values listed in
Table 1. Diagrams show considered error measures of Equations 7, 9, and 10 for IDM and VDIFF using Data Set 3. 
The errors are plotted in logarithmic scale.



as has been shown by cross-comparison. Microscopic traffic models
can easily cope with this kind of heterogeneity because different
parameter values can be attributed to each individual driver–vehicle
unit. However, to obtain these distributions of calibrated model param-
eters, more trajectories have to be analyzed, for example, by using
the NGSIM trajectory data (19).

A second contribution to the overall calibration error results from
a nonconstant driving style of human drivers, which is referred to as
intradriver variability: human drivers do not drive constantly over

time, that is, their behavioral driving parameters are time dependent.
For a first estimation, the distances at standstills in Data Set 3 were
compared to the minimum distance as a direct model parameter of
the IDM. The driver stops three times because of red traffic lights. The
bumper-to-bumper distances are sstop,1 = 1.39m, sstop,2 = 1.42m, and
sstop,3 = 1.64m. These different values in similar situations indicate
that a deterministic car-following model only allows for an averaged,
thus, effective description of the human driving behavior, resulting in
parameter values that capture the mean observed driving performance.
Considering the theoretical best case of a perfect agreement between
data and simulation for all times except for the three standstills, the
relative error function depends on s0 only, and an analytical mini-
mization of s0 results in s 0

opt ≈ 1.458m. This optimal solution defines
a theoretical lower bound (based on about 15% of the data of the con-
sidered time series) for the relative error measure of ξmin(s 0

opt ) ≈ 7.9%.
Therefore, the intradriver variability accounts for a large part of the
deviations between simulations and empirical observations. This
influence could be captured by considering time-dependent model
parameters reflecting driver adaptation processes as for example
proposed in (20, 21).

Finally, driver anticipation contributes to the overall error as well
but is not incorporated in simple car-following models. This is one
possible cause for a model error, that is, the residual difference between
a perfectly time-independent driving style and a model calibrated
to it. For example, the study found a negligible influence of the addi-
tionally incorporated reaction time, indicating that human drivers
very well anticipate while driving and therefore compensate for
their physiological reaction time. However, these physiological and
psychological aspects can be determined only indirectly, by looking
at the resulting driving behavior. Consequently, it would be inter-
esting to check if a negative reaction (or, rather, anticipation) time
decreases the calibration errors. More complex microscopic traffic
models try to take those aspects into account (13). However, multi-
leader anticipation requires trajectory data because the data record-
ing by using radar sensors of single floating cars is limited to the
immediate predecessor (22).
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